Deep Learning on jovian decametric emissions

Stéphane Aicardi

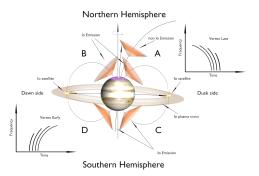
Direction Informatique de l'Observatoire

Semi-Hack-a-thon ASOV – March 24th 2021

Physical phenomenon Observations Simulations

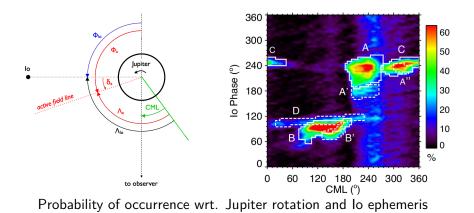
Jovian decametric emissions

Observed since the 50's, Jovian decametric emissions are produced by the cyclotron-maser instability, due to solar wind or by Jupiter-lo electrodynamic interaction.



Physical phenomenon Observations Simulations

Jovian decametric emissions



Physical phenomenon Observations Simulations

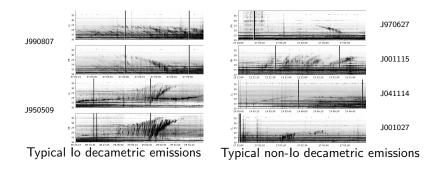
Nançay Decameter Array

Built in the 70's Numerical data since 1990 10 - 100 MHz Daily observations of the Sun and Jupiter

Receiver	# channels	Resolution	Data size	
		(ms x kHz)	(8 hours)	
Routine	2	500 x 75	22 MB	
New Routine	4	500 × 49	568 MB	
luneN	Δ	2.6 x 3.05	2.9 TB	
JunoN	4	83.2 × 12.2	22.6 GB	

Physical phenomenon Observations Simulations

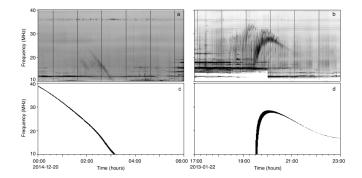
Observations with the NDA



Physical phenomenon Observations Simulations

Simulations

ExPRES: an Exoplanetary and Planetary Radio Emissions Simulator (C. K. Louis et al)



https://maser.lesia.obspm.fr/task-2-modeling-tools/expres/

Jovian decametric emissions

Neural networks and Deep Learning Deep Learning on NDA observations Physical phenomenon Observations Simulations

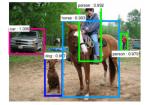
ExPRES : run on demand

OPUSjob ← → C	controller × + a voparis-uws-maser.obspm.fr/client/	ß	☆	θ	:	
	UWS MASER I Job List & Job Definition	in				
	Welcome to the Run-on-demand server of the MASER project (Measuring, Analysing, Simulating Emissions i the Radio range).	n				
	This server is built on top of the UWS (Universal Worker Service) protocol developed by the IVOA (International Virtual Observatory Alliance).					
	This interface is available for requesting runs of codes developed within the MASER project. Currently we offer runs for:					
	ExPRES (Exoplanetary and Planetary Radio Emission Simulator)					
	Publicly requested runs are publicly accessible (including configuration and results):					
	ExPRES past runs					
	Authenticated access can be requested to the MASER team.					
	Observatoire de Paris UWS Server (OPUS). O Observatoire de Paris 2015-2020.					

https://voparis-uws-maser.obspm.fr/

Neural networks: why?

Classify



Localize

Translate

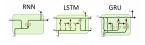
Segment

Play!

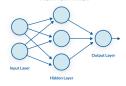
Generate

Neural networks: how?

Perceptron (1957)

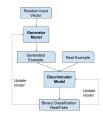


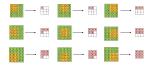
Recurrent Neural Network (1995)



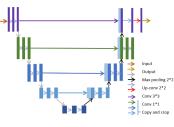
Perceptron Input And Output

Multilayer Perceptron (1985)





Convolutional Neural Network (1989)



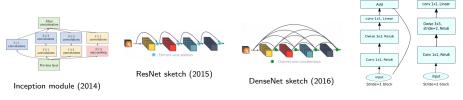
UNet (2015)

Generative Adversarial Network (2015)

Convolutional networks

First tries :

Then optimize convolutional block :



MobileNetv2 (2019)

Latest trends in CNN

Deeper networks (ResNet, DenseNet)

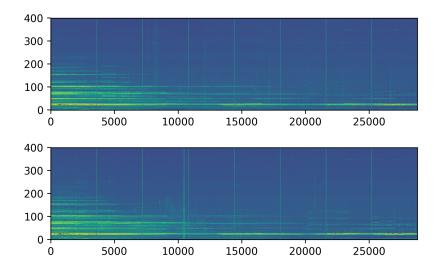
- Wider networks (Wide ResNet, Pyramidal Net, ResNeXt)
- Smaller networks (MobileNet, EfficientNet)
- Learn best architecture instead of handcraft it! (NASNet, AmeobaNet, EfficientNet)

CNN Performance evolution

Net	Year	# params	FLOPS	ImageNet top 5
AlexNet	2012	60M	0.7B	80.4%
GoogLeNet	2014	6.8M	1.6B	90.8%
VGG19	2014	143M	19.6B	90.1%
ResNet-50	2015	26M	4.1B	92.3%
DenseNet-169	2016	14M	3.5B	93.2%
MobileNetV2	2019	3.4M	0.3B	90.5%
EfficientNet-B0	2019	5.3M	0.39B	93.5%
EfficientNet-B3	2019	12M	1.8B	95.6%

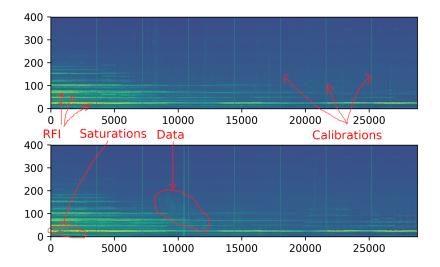
Pretrained models are freely available. Using them speeds up training.

Data exploration



Stéphane Aicardi Deep Learning on jovian DAM emissions

Data exploration

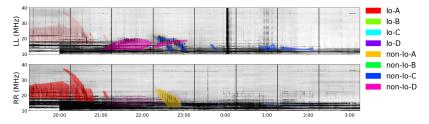


Stéphane Aicardi Deep Learning on jovian DAM emissions

Catalog

Marques et al (2017) built a catalog of 26 years of jovian decametric emissions.

8163 observations (\sim 8 hours), 11463 emissions (type, polarization, time range, freq. range, polygon)



Data preparation

Cut samples of 4000 s into observations.

Clean calibrations, background, filters.

Normalize data wrt mean, sigma.

Reduce (mean) to samples of size 400 (time) \times 400 (freq) \times 3 (channels = LH, RH, Circular pol)

Output = segmentation into 9 types (nothing, Io-A,B,C,D and Non-Io-A,B,C,D) reduced to 100x100.

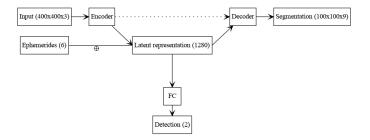
17968 samples in training set, 1998 samples in validation set (balanced wrt presence of emission)

Convolutional Network

Unet architecture, with EfficientNetB0 as encoder and a simple convolutional decoder.

Probability of detection obtained via a fully connected network connected to the latent space.

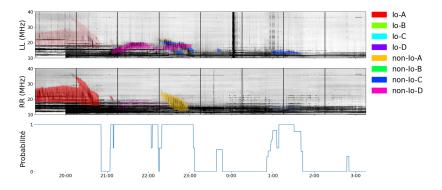
14 M parameters, 10 M in the decoder.



Results

Detection of emission : > 97 % success

Segmentation : > 92 % IOU.



Stéphane Aicardi Deep Learning on jovian DAM emissions

Visualization portal

Visualization of the catalog and neural network predictions: https://voparis-minerva-jupiter.obspm.fr/

Validation of the predictions

Probability check for an emission:

https://jupiter-probability-tool.obspm.fr/

- Check if lo emission is probable
- Compare with ExPRES simulation and observation

Perspectives

Reduce decoder parameters to speed up training and infering.

Apply to emissions due to Ganymede and Europa.

More validations

Build a TAP service with the original catalog and the automated predictions. Use B. Cecconi's TFCAT to describe polygons.

Detection in real time and signaling with VoEvents.

Thank you!