

Evolution de VAMDCen fonction des retours utilisateurs : Le formatHITRAN

N.Moreau¹, C. Richard²

¹ LERMA - Observatoire de Paris
 ² ICQ - Univ. Bourgogne Franche-Comté

Le format XSAMS

- VAMDC : e-infrastructure pour interrogation de bases de données atomiques et moléculaires
- Utilisation d'un middleware commun installé au dessus de chaque base
- Utilisation d'un data model commun pour le langage d'interrogation et le format des données : XSAMS
- XML schema décrivant finement un grand nombre de phénomènes physiques
- Avantage : description très précise des données
- Inconvénient : difficulté à parser les résultats

Le format XSAMS

- VAMDC fournit des outils pour parser XSAMS (librairies java, python)
- Il est nécessaire de bien connaître le schéma
- Point bloquant : les utilisateurs des données sont des scientifiques qui ne vont pas coder pour accéder à des données
- Ils continuent à utiliser les interfaces natives des bases et leurs sorties standards
- Formats texte adaptés à la lecture par des codes Fortran (lignes de 80 caractères)

Ex: CDMS, JPL, Hitran

Exemple HITRAN (160)³

- Compilation de paramètres spectroscopiques pour la prédiction et la simulation de l'émission et de la transmission de la lumière dans l'atmosphère
- Utilisée pour l'étude des atmosphères planétaires

Format for HITRAN Parameters, Editions after 2001																			
Parameter	Molecule number	biotopologue number	Transition wavenumber (cm ⁻¹)	Line Intensity	Einstein A- coefficient	Air- broadcood width	Self- broadened width	lower- state finergy	Temperature dependence (of air width)	Pressure shift	tipper vibrational quanta	lower subrational quanta	upper local quinta	lower local quanta	Error codes	Reference codes	Flug for line- mixing	opper statistical weight	lower statistical weight
Field Length	2	1	12	10	10	5	5	10	- 4	8	15	15	15	15	6	12	1	7	7
Data type	Integer	Integer	Real	Real	Real	Real	Real	Real	Real	Real	Text	Text	Test	Text	Integer	Integer	Test	Real	Real

31 5000.090000 2.386E-26 1.304E-03.07000.089	874,91966,850,000000	2 0 3	0 0 0 42 5 38	43 5 39	0055502433 5 2 3 8	85.0	87.0
31 5000.614500 2.022E-26 1.431E-03.07040.083	987,63978.828.688866	2 8 3	8 8 8 38 9 30	39 9 31	0055582433 5 2 3 0	77.0	79.0
31 5080.888400 2.410E-26 1.332E-83.07010.888	872,22300.850.900000	2 0 3	8 8 8 41 6 35	42 6 36	8855582433 5 2 3 8	83.0	85.0
31 5000.845700 2.381E-26 1.157E-03.06990.091	855.49870.868.988889	2 0 3	0 0 0 43 2 41	44 2 42	0055502433 5 2 3 0	87.0	89.0
31 5001.028400 2.217E-26 1.394E-03.07030.085	888,64850.830.000000	2 0 3	0 0 0 39 8 31	46 8 32	0055502433 5 2 3 0	79.0	81.0
31 5001.086600 2.357E-26 1.365E-03.07020.687	876.77070.846.999969	2 9 3	0 0 0 40 7 34	41 7 35	0055502433 5 2 3 8	81.0	83.0
31 5001.402500 2.678E-26 1.278E-03.07000.090	846.83328.850.008080	2 0 3	0 0 0 42 4 39	43 4 40	0055582433 5 2 3 0	85.0	87.0
31 5001.432500 2.487E-26 1.063E-03.06860.091	828,99150.860.000000	2 0 3	0 0 0 43 1 42	44 1 43	0055502433 5 2 3 0	87.0	89.0
31 5002,157380 2.007E-26 1.456E-03.07070.082	901.73798.810.000000	203	0 0 0 36 10 27	37 10 28	8055502433 5 2 3 0	73.0	75.0
31 5002.405400 2.961E-26 1.246E-03.07000.091	828.92770.850.000000	203	0 0 0 42 3 40	43 3 41	0055502433 5 2 3 0	85.0	87.0
31 5882,783288 2,768E-26 1,385E-83,87818,889	839,33298,850,000000	283	8 8 8 41 5 36	42 5 37	8855582433 5 2 3 8	83.0	85.8

Une solution : convertir les données

- Utilisation de web services pour la conversion des données
- En entrée : 1 fichier XSAMS
- En sortie : un fichier HTML, XML, CSV ...
- Définition d'une interface standard
 (http://www.vamdc.eu/documents/standards/dataConsumerProtocol)
- Chaque service est une VOResource
- Enregistré dans le registry
- Chaque node peut lister les transformations compatibles avec les données qu'il contient

Exemple de déclaration d'interface

. . .

<application>ivo://vamdc/atomicxsams2html</application>

<application>ivo://vamdc/xsams-mux</application>

<application>ivo://vamdc/xsams2sme</application>

<application>ivo://vamdc/XSAMS-bibtex</application>

<application>ivo://vamdc/xsams-views</application>

</capability>

Transformations applicables

Exemple : Sortie HITRAN

- Base de référence pour la spectroscopie
- Format reconnu et très utilisé, demandé régulièrement
- Implémentation par Cyril Richard d'une librairie java de conversion XSAMS→ Hitran
- Principales difficultés :
- conversion des noms des molécules de VAMDC (InchiKey) vers format HITRAN (numérique)
 - extraire les valeurs des nombres quantiques
- Outil intégré au portail VAMDC pour faire la transformation en ligne
 - http://portal.vamdc.eu

Plot

- Autre demande des utilisateurs : visualisation du contenu des fichiers

Prérequis:

- affichage de fichiers contenant jusqu'à 10 000 transitions
- possibilité de comparer le contenu de 2 fichiers différents
- Implémentation à travers une page web : http://vamdc.eu/hitran-display
- Utilisation de la librairie javascript HighCharts
- Choix test de diverses librairies (plotly, chartjs, flot) :
 - supporte le mieux l'affichage de fichiers avec beaucoup de points

