
Exploring TAP services 
with

TapHandle

http://saada.u-strasbg.fr/taphandle
laurent.michel@astro.unistra.fr



TAP and the Simple Protocols

Simple protocols (SIAP, SSAP, CSP SLAP…) :
○ One data collection per service
○ One data category per protocol
○ Parameter query language
○ Output format defined by the protocol

TAP is not a simple protocol
○ TAP exposes tabular data

○ TAP services are self-describing.
○ TAP_SCHEMA, capability /table

○ Data are selected by a structured query language (derived from SQL)
○ Geometrical functions but neither database update nor procedure

○ Asynchronous query processing



The TAP Client Challenge

Being both interactive and generic.

○ The client doesn’t know about the data it will access
○ Data are discovered thanks to both TAP_SCHEMA and /tables capability

○ The query editor has to tackle with the meta-data of the current service
○ Designing an ADQL editor both rich and user friendly is not that easy

○ The client has to tackle with the capabilities really available
○ TAP being a complex protocol, we have to consider dealing with partial 

implementations



The Goal of TapHandle

• A tool designed for discovering data exposed in any TAP service.
• No prior knowledge about the data content

 
• Accessing TAP services with a WEB browser.

• Accessing meta-data
• Accessing data
• Query editor
• Downloading results
• Interoperability

• Accessing simultaneously multiple TAP services
• Services merged in a single view

• Using the browser facilities as much as possible for data display
• VOTables displayed as HTML tables
• File with universal types (PNG, JPEG, PDF, text…) are taken in charge by the browser
• Astronomical data format can be redirected to SAMP clients



The Concept of TapHandle

TAP Service

Registry

TAP Service TAP ServiceTAP Service

Several TAP services - One single view



TapHandle Architecture

TAP Service

Registry

TAP Service TAP ServiceTAP Service

Merging on one Web page data 
asynchronously loaded from 
different servers is quite difficult 
or impossible for security 
reasons (cross-domain)



TapHandle Proxy

TAP Service

TAP Service
TAP ServiceTAP Service

Registry

Proxy 
(JEE)

✓ The proxy is the actual  client TAP

✓ The Web page is a view on the data 
available on the proxy

✓ The proxy/browser communication  is done 
by AJAX queries with an  ad-hoc protocol



The TapHandle Proxy

Proxy 
(JEE)

✓ XML files (and VOTables) received by the proxy 
are translated in JSON.

✓ All data and meta-data are cached by the proxy 

✓ Errors are processed at proxy level

Node base
(cache meta)

User base
(cache data)

TAP requests - HTTP GET/POST

Meta data (XML) - data (VOTables)

TAP Service

JSON
HTTP 
 GET



TapHandle : Connecting a Service

✓ The /tables output is split into individual per table files

✓ Documented table joins are taken out from the TAP_SCHEMA

✓ Declared capabilities are tested one by one
○ sync, async, upload, table joins

✓ Job results are converted on the fly in JSON messages (Stilts)

Capability 
testing

/availalbility
sync
async
upload
join

table list : tables.json
col. def.: {table}_att.json joins: {table}_joinkeys.json

/tables
or
TAP_SCHEMA 
if /tables KO

TAP_SCHEMA
query 

pr
ox

y
TA

P 
se

rv
eu

r



The TapHandle Main Screen
Search bar for TAP 
services

Path of the current 
resource

Tree of accessible 
resources

Query editor

Query result

Job management



Connecting the Registry

SELECT ivoid, access_url, res_title
FROM rr.capability

NATURAL JOIN rr.interface
NATURAL JOIN rr.resource

WHERE standard_id='ivo://ivoa.net/std/tap' 
  AND intf_type = 'vs:paramhttp'

✓ The proxy gets the description of all TAP 
services harvested by the GAVO TAP-Regext

✓ Registry data are searched by a TAP query

✓ The list of declared services is sent to each 
client at starting time.



Tap Service Selection

✓ A suggest-list shows out the TAP services matching the typed text.



Job Management

✓ Jobs are systematically executed in asynchronous mode (if supported).

✓ The interface waits 10” at the most on the result.

✓ Output of previous jobs remain accessible
○ To display the result
○ To refine the query
○ To be put in the shopping cart
○ To be send to SAMP clients



Query Editor

✓ Constraints are edited one by one from the list of available columns.

✓ Constraints are stacked in a container.

✓ ADQL queries can be refined by hand



Table Join Management

✓ The query editor gathers the tables declared as joined  in the TAP_SCHEMA

✓ Join statements are automatically set into the query 



Shoppping Cart Facility

✓ Query results or  data files referenced by them can be put in the cart.

✓ The shopping cart content can be downloaded in a ZIP archive.
○ Asynchronously processed



Interoperability

✓ Data searched in TAP nodes can be exported with SAMP
○ Query results
○ Data files referenced by query results



Resource Filtering

✓ Both schemas and tables exposed by a service can be filtered
○ Essential for huge resources like Vizier



Data Formatting

✓ Displayed data are formatted on the fly
○ URLs
○ Vectors
○ Bibcodes
○ STC Regions



Datalink Support

✓ Datalink responses are shown as forms built on the fly
○ SAMP connection for linked files
○ Region editor for cutouts
○ HTML forms when input parameters are requested



Service Survey

✓ Capabilities as tested by TapHandle
○ One row per server (not per service)



• Scheduled
• Uploading position lists
• Uploading job results
• Support of extended functions by the query  editor

• Aggregation (count, min, max…)
• ADQL functions.

• Better error handling
• Lot of minor changes making together the interface more comprehensive

• Thinking about a better use of the meta data
• Better representation of joined table sets.
• Extended use of the meta data

• plain text meta data
• Units
• UCDs 

• Thinking about persistence for the query results
• User sessions
• Connecting VOSpace?

Prospects


