Development of Theoretical Databases for TITAN

Anabela C. Gonçalves

LUTH, Observatoire de Paris

France

Theoretical databases with TITAN

Photo-ionization models for dense, warm, and optically thick/thin media irradiated by an X-ray continuum

- Provides: ionization and temperature structures for media in constant density, constant gas pressure, or constant total pressure
- Also: outward, transmitted and reflected spectra in multiple directions
- Scientific applications: the central regions of Active Galactic Nuclei (AGN), X-ray binaries, Ultra-soft Luminous X-ray sources (ULXs) ...
- Observational applications: interpretation of high-quality X-ray data from Chandra, XMM-Newton, Suzaku
- Coupled with the code NOAR, covers the Energy range 10-10⁵ eV: preparation of future X-ray missions (*Con-X*, *Simbol-X*, ...)

The need for model databases

TITAN modeling capabilities required by a growing community working on X-ray spectra of AGN, ULXs, ...

- TITAN models compute the transfer for ~1000 lines and the continuum => longer computation times (~30h for constant P_{tot})
- TITAN allows for the modeling of regions in total pressure equilibrium => hand-check for convergence, possible instabilities
- Several domains of applicability: physical parameters can vary over a large range => quick, first-order estimation of the physical parameters needed prior to complete modeling
- Compare TITAN physical modeling with phenomenological tools and model X-ray data in XSPEC => need atable FITS models

Grids of models benchmark

Focused on a TITAN particularity: constant P_{tot} models

- Started by a small number of varying parameters characterizing the ionized medium: ξ , N_H, and Γ
- Parameters covered by the test grids:
 - Ionization parameter $1000 \le \xi \le 4000$ erg cm s⁻¹
 - Incident continuum (a power-law) photon index: $2.1 \le \Gamma \le 3.3$
 - Ionised medium column density: $10^{22} \le N_H \le 10^{23}$ cm⁻²
- Computed multiple sets of grids (45 models each), for different R
 - Absorption grid
 - Emission grids in multiple directions (~0-37.5°, 37.5-60°, 60-83.5°)
 - Reflection grids in multiple directions (same angles)

Interface with XSPEC

Input parameter value, delta, min, bot, top, and max values for ...

1.4

1E+03

1E+22

0

0

0.3

1.5E+03

4.5E+22

-0.001

Model Fit Model Component Parameter Unit

1 TITAN ab

1 TITAN ab

1 TITAN ab

Files being used for table models:

File Tabs.fits

1 TITAN ab

3 1 TITAN ab

0.01

alpha

Redshift

xi

NH

norm

Session Édition Affichage Signets Configuration Aide

1.4

1000

1E+22

XSPEC>model atable{Tabs.fits}

Model: TITAN ab<1>

1:TITAN ab:alpha>1.8

2:TITAN ab:xi>2200

3:TITAN ab:NH>3e22

4:TITAN ab:Redshift>0

5:TITAN ab:norm>le-3

par

1

2

з

4

5

1

Model: TITAN ab<1>

par comp

1

2

4

5

TITAN ascii tables converted into FITS table models

2.3

4F+03

1F+23

1E+24

5

0.00000

0.00000

0.00000

0.00000

Header and body format, specific to XSPEC

leader and body format, specific to	
anabela@bob75-2-82-67-146-115.fbx.proxad.net: /home/anabela/0PM/titan-noar - Terminal - Konsole	

1.4

1E+03

1E+22

0

0

Value

1.80000

2200.00

0.00000

3.000000E+22 +/-

1.000000E-03 +/-

2.3

4F+03

1E+23

1E+24

5

+/-

+/-

frozen

	1	2	3
Selec	:t		
	I		
Inver	t		
1	1.400000E+00	1.000000E+03	1.000000E+22
2	1.400000E+00	1.000000E+03	5.500000E+22
3	1.400000E+00	1.000000E+03	1.000000E+23
4	1.400000E+00	2.500000E+03	1.000000E+22
5	1.400000E+00	2.500000E+03	5.500000 E+ 22
6	1.400000E+00	2.500000E+03	1.000000E+23
7	1.400000E+00	4.000000E+03	1.000000E+22
8	1.400000E+00	4.000000E+03	5.500000E+22
9	1.400000E+00	4.000000E+03	1.000000E+23
10	1.700000E+00	1.000000E+03	1.000000E+22
11	1.700000E+00	1.000000E+03	5.500000E+22
12	1.700000E+00	1.000000E+03	1.000000E+23
13	1.700000E+00	2.500000E+03	1.000000E+22
14	1.700000E+00	2.500000E+03	5.500000E+22
15	1.700000E+00	2.500000E+03	1.000000E+23
16	1.700000E+00	4.000000E+03	1.000000E+22
17	1.700000E+00	4.000000E+03	5.500000E+22
18	1.700000E+00	4.000000E+03	1.000000E+23
19	2.000000E+00	1.000000E+03	1.000000E+22
20	2.000000 E+ 00	1.000000E+03	5.500000E+22
21	2.000000E+00	1.000000E+03	1.000000E+23
22	2.000000 E+ 00	2.500000 E +03	1.000000E+22
23	2.000000 E+ 00	2.500000E+03	5.500000E+22
24	2.000000E+00	2.500000E+03	1.000000E+23
25	2.000000E+00	4.000000E+03	1.000000E+22

🛓 🔳 Terminal

Model comp

Application to Chandra data

Modeling the Warm Absorber (WA) in NGC 3783

Application to XMM-Newton data

wabs X tbvarabs X (diskbb + po)

 $\chi^2 = 221.1/214 \ (1.04)$

wabs X tbvarabs X (Temi + Tabs) $\chi^2 = 213.5/213 (1.00)$

Perspectives and future work

TITAN photo-ionization models available to all

- Extend varying parameter's range (Titanic cluster, IDRIS):
 - Ionization parameter $10 \le \xi \le 10^5$
 - Incident continuum (power-law) photon index: $1.2 \le \Gamma \le 3.6$
 - Ionised medium column density: $10^{20} \le N_{H} \le 10^{24.5}$
- Extend energy range (and resolutions):
 - TITAN as stand-alone code: E < 25 keV
 - TITAN + NOAR (Compton heating/cooling): 25 < E < 100 keV
- Automation and documentation effort:
 - Interface tools to convert TITAN models into XSPEC FITS table models
 - Databases for other information produced by the code (T, ions, ...)

