
ASOV- Days – January 2014

Workflows for astronomy using PDL

Carlo Maria Zwölf, Julian Garrido.

News from Workflow activity

• April 2013: publication of an IVOA note on scientifc Workfow (A. Schaaff, J.E. Ruiz et al)

• May 2013: interop@heidelberg → Workfow meeting as a branch of GWS working group

• WF4ever, ER-fow and PDL community assembled

• November 2013: Workfow working group meeting

• Details on http://www.france-ov.org/twiki/bin/view/GROUPEStravail/WorkfowReunion9

• Shaped as a PDL tutorial (for using from scratch the framework implemented)

• 21st of January 2014 : PDL ended its second IVOA community RFC period

• http://wiki.ivoa.net/twiki/bin/view/IVOA/PDL1RFC/

• Immediately started TGC review

PDL: a quick overview

• Parameter Description Language (PDL) is intended to be a lingua
franca of parameters:

– Describes params in a suffcient detail to allow workfow tools to check if
parameters can be “piped” between services

● Physical Properties (Nature, Meaning, unit, precision,...)

● Computing (Numerical Type, UCD, SKOS concept)

– Also has capabilities do describe constraints on parameters

● Physical constraints

● Arbitrary (including mathematical) constraints

● Not a description of parameters “values” (cf. UWS).

● PDL is an overlay completely independent from the technology used by the
described services.

PDL: a quick overview

PDL implementations based on
Generic software components can be 'configured' by a PDL description for creating quickly fully

interoperable new services

Server exposing
services as web

services

User Interface (for
interaction with PDL

services)

Auto Generation of checking
algorithms from description

Workflow plugin (for
WF interaction with

PDL services)

A priori
computation of
interoperability

graphs

• Parameter Description Language (PDL) is intended to be a lingua
franca of parameters:

– Describes params in a suffcient detail to allow workfow tools to check if
parameters can be “piped” between services

● Physical Properties (Nature, Meaning, unit, precision,...)

● Computing (Numerical Type, UCD, SKOS concept)

– Also has capabilities do describe constraints on parameters

● Physical constraints

● Arbitrary (including mathematical) constraints

● Not a description of parameters “values” (cf. UWS).

● PDL is an overlay completely independent from the technology used by the
described services.

PDL Principles
● The language is based on a Data Model;

● Each object of the DM corresponds to a syntactic element:
● Sentences are made by building object-structures;

● Each sentence is interpreted by a computer by parsing the sentence-related
object-structure;

● With no loss of generality → the DM is fixed into an XML schema.

.

Two double values required:
- double Temp
- double Dens

Temp should be
temperature ?
Which unit ?

● The language is based on a Data Model;

● Each object of the DM corresponds to a syntactic element:
● Sentences are made by building object-structures;

● Each sentence is interpreted by a computer by parsing the sentence-related
object-structure;

● With no loss of generality → the DM is fixed into an XML schema.

.

Temp should be
temperature ?
Which unit ?

Sending : Temp = -4 ; Dens = -10

PDL Principles

● The language is based on a Data Model;

● Each object of the DM corresponds to a syntactic element:
● Sentences are made by building object-structures;

● Each sentence is interpreted by a computer by parsing the sentence-related
object-structure;

● With no loss of generality → the DM is fixed into an XML schema.

. I need two parameters.
The first is called Temp and is a temperature

expressed in Kelvin.
The second is called Dens and is an electronic

density in cm^-3. Temp and Dens are always positive.
Moreover, the product

temp x dens must be in the range
[10 ; 10^4]

PDL Principles

● The language is based on a Data Model;

● Each object of the DM corresponds to a syntactic element:
● Sentences are made by building object-structures;

● Each sentence is interpreted by a computer by parsing the sentence-related object-
structure;

● With no loss of generality → the DM is fixed into an XML schema.

. I need two parameters.
The first is called Temp and is a temperature

expressed in Kelvin.
The second is called Dens and is an electronic

density in cm^-3. Temp and Dens are always positive.
Moreover, the product

temp x dens must be in the range
[10 ; 10^4]

OK !
Everything is clear

Sending : Temp = -4 ; Dens = -10

Automatic generated
PDL checker

Automatic generated
PDL checker

PDL Principles

Since parameters and constraints are finely described with fine grained granularity:

● Generic software elements could be automatically “configured” by a specific PDL description
instance:

– Services containers

– Graphical User Interfaces

– Workflow Plugins
● Checking algorithms and interoperability checker between service are automatically

generated from descriptions

PDL CORE
(the grammar)

Automatic Generation of
Checking algorithms

Dynamic 'intelligent'
graphical client

PDL Server
(exposing every code as asynchronous

 service)

Workflow(s) Plugin(s)

Interoperability Checker

calls

interact

uses

Based on

Based on

Software components based on PDL (PDL
Framework)

PDL description editor Generate
descriptions

Why does PDL improve Interoperability ?

w

Simulations
Ramses

Code PDR

Code Dustem

Simulateur de
Telescope (Alma)

Donnée
d'observations

● PDL allows horizontal (i.e. between heterogeneous DM
and/or Standards) interoperability.

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Service 3 :
Inputs c reals

Outputs d real and
d=sqrt(c)

Eventual problems are detected only during the workflow execution

Why does PDL improve Interoperability ?

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Service 3 :
Inputs c reals

Outputs d real and
d=sqrt(c)

Eventual problems are detected only during the workflow execution

Why does PDL improve Interoperability ?

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Service 3 :
Inputs c reals

Outputs d real and
d=sqrt(c)

Eventual problems are detected only during the workflow execution

Why does PDL improve Interoperability ?

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Always c < 0

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Always c > 0

Service 3 :
Inputs c reals

Always c > 0
Outputs d real and

d=sqrt(c)
Always d > 0

Adding a
description

layer

Eventual problems are detected a priori

Why does PDL improve Interoperability ?

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Always c < 0

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Always c > 0

Service 3 :
Inputs c reals

Always c > 0
Outputs d real and

d=sqrt(c)
Always d > 0

Eventual problems are detected a priori

Adding a
description

layer

Why does PDL improve Interoperability ?

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Always c < 0

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Always c > 0

Service 3 :
Inputs c reals

Always c > 0
Outputs d real and

d=sqrt(c)
Always d > 0

Eventual problems are detected a priori

Adding a
description

layer

→ PDL generalize these concepts

Why does PDL improve Interoperability ?

PDL workflows with heterogeneous
workflows engines

● PDL allow easy cross communication for workflows using different engines:

N1.1 N1.2

N1.4

N1.3

N1.5

N

legend

Workflow node element

PDL plugin for this WF engine

Piece of a WF exposed
as PDL service

We use different colors for
presenting different WF engines

N2.1 N2.2

N.2.3

N3.1

N3.2

● Assume that we want to use

– The entire WF2 as node N1.5 of WF1

– The entire WF3 as node N2.3 of WF2

● Let us see how to perform this with PDL...

WF2

WF1

WF3

● PDL allow easy cross communication for workflows using different engines:

N1.1 N1.2

N1.4

N1.3

N1.5

N

legend

Workflow node element

PDL plugin for this WF engine

Piece of a WF exposed
as PDL service

We use different colors for
presenting different WF engines

N2.1 N2.2

N.2.3

● Assume that we want to use

– The entire WF2 as node N1.5 of WF1

– The entire WF3 as node N2.3 of WF2

● Let us see how to perform this with PDL...

WF2

WF1

PDL
Service
exposing
WF3

N3.1

N3.2

PDL workflows with heterogeneous
workflows engines

● PDL allow easy cross communication for workflows using different engines:

N1.1 N1.2

N1.4

N1.3

N1.5

N

legend

Workflow node element

PDL plugin for this WF engine

Piece of a WF exposed
as PDL service

We use different colors for
presenting different WF engines

N2.1 N2.2

N.2.3

● Assume that we want to use

– The entire WF2 as node N1.5 of WF1

– The entire WF3 as node N2.3 of WF2

● Let us see how to perform this with PDL...

WF2

WF1

PDL
Service
exposing
WF3

N3.1

N3.2

● WF3 is exposed as a PDL Service

PDL workflows with heterogeneous
workflows engines

● PDL allow easy cross communication for workflows using different engines:

N1.1 N1.2

N1.4

N1.3

N1.5

N

legend

Workflow node element

PDL plugin for this WF engine

Piece of a WF exposed
as PDL service

We use different colors for
presenting different WF engines

N2.1 N2.2
● Assume that we want to use

– The entire WF2 as node N1.5 of WF1

– The entire WF3 as node N2.3 of WF2

● Let us see how to perform this with PDL...

WF2

WF1

PDL
Service
exposing
WF3

N3.1

N3.2

● WF3 is exposed as a PDL Service

● Node 2.3 calls (using the plugin) the PDL service of WF3

PDL
Plugin

PDL workflows with heterogeneous
workflows engines

● PDL allow easy cross communication for workflows using different engines:

N1.1 N1.2

N1.4

N1.3

N1.5

N

legend

Workflow node element

PDL plugin for this WF engine

Piece of a WF exposed
as PDL service

We use different colors for
presenting different WF engines

N2.1 N2.2
● Assume that we want to use

– The entire WF2 as node N1.5 of WF1

– The entire WF3 as node N2.3 of WF2

● Let us see how to perform this with PDL...

WF1

PDL
Service
exposing
WF3

N3.1

N3.2

● WF3 is exposed as a PDL Service

● Node 2.3 calls (using the plugin) the PDL service of WF3

● WF2 is exposed as a PDL Service

PDL
PluginPDL Service

exposing
WF2

PDL workflows with heterogeneous
workflows engines

● PDL allow easy cross communication for workflows using different engines:

N1.1 N1.2

N1.4

N1.3
N

legend

Workflow node element

PDL plugin for this WF engine

Piece of a WF exposed
as PDL service

We use different colors for
presenting different WF engines

N2.1 N2.2
● Assume that we want to use

– The entire WF2 as node N1.5 of WF1

– The entire WF3 as node N2.3 of WF2

● Let us see how to perform this with PDL...

WF1

PDL
Service
exposing
WF3

N3.1

N3.2

● WF3 is exposed as a PDL Service

● Node 2.3 calls (using the plugin) the PDL service of WF3

● WF2 is exposed as a PDL Service

● Node 1.5 calls (using the plugin) the PDL service of WF2

PDL
PluginPDL Service

exposing
WF2

PDL
Plugin

PDL workflows with heterogeneous
workflows engines

● PDL allow easy cross communication for workflows using different engines:

N1.1 N1.2

N1.4

N1.3
N

legend

Workflow node element

PDL plugin for this WF engine

Piece of a WF exposed
as PDL service

We use different colors for
presenting different WF engines

N2.1 N2.2

WF1

PDL
Service
exposing
WF3

N3.1

N3.2

Remarks

● WF1 can finally call easily element of other Workflow engines

● The resulting WF benefits from PDL advantages

– Strength scientific oriented interoperabilty

– Check of interoperabilty graph coherence

● Extracting a PDL service from a piece of Workflow is quick and
the procedure could be automatized

PDL
PluginPDL Service

exposing
WF2

PDL
Plugin

PDL workflows with heterogeneous
workflows engines

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

