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News from Workflow activity

• April 2013: publication of an IVOA note on scientifc Workfow (A. Schaaff, J.E. Ruiz et al)

• May 2013: interop@heidelberg → Workfow meeting as a branch of GWS working group

• WF4ever, ER-fow and PDL community assembled

• November 2013: Workfow working group meeting

• Details on http://www.france-ov.org/twiki/bin/view/GROUPEStravail/WorkfowReunion9

• Shaped as a PDL tutorial (for using from scratch the framework implemented)

• 21st of January 2014 : PDL ended its second IVOA community RFC period

• http://wiki.ivoa.net/twiki/bin/view/IVOA/PDL1RFC/

• Immediately started TGC review



PDL: a quick overview

• Parameter Description Language (PDL) is intended to be a lingua 
franca of parameters:

– Describes params in a suffcient detail to allow workfow tools to check if 
parameters can be “piped” between services

● Physical Properties (Nature, Meaning, unit, precision,...)

● Computing (Numerical Type, UCD, SKOS concept)

– Also has capabilities do describe constraints on parameters

● Physical constraints

● Arbitrary (including mathematical) constraints

● Not a description of parameters “values” (cf. UWS).

● PDL is an overlay completely independent  from the technology used by the 
described services. 
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PDL Principles
● The language is based on a Data Model;

● Each object of the DM corresponds to a syntactic element:
● Sentences are made by building object-structures;

● Each sentence is interpreted by a computer by parsing the sentence-related 
object-structure;

● With no loss of generality → the DM is fixed into an XML schema.

.

Two double values required:
- double Temp
- double Dens

Temp should be 
temperature ?
Which unit ?
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● The language is based on a Data Model;

● Each object of the DM corresponds to a syntactic element:
● Sentences are made by building object-structures;

● Each sentence is interpreted by a computer by parsing the sentence-related object-
structure;

● With no loss of generality → the DM is fixed into an XML schema.

. I need two parameters.
The first is called Temp and is a temperature 

expressed in Kelvin.
The second is called Dens and is an electronic 

density in cm^-3. Temp and Dens are always positive.
Moreover, the product 

temp x dens must be in the range 
[10 ; 10^4]

OK !
Everything is clear

Sending : Temp = -4 ; Dens = -10

Automatic generated 
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Automatic generated 
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Since parameters and constraints are finely described with fine grained granularity:

● Generic software elements could be automatically “configured” by a specific PDL description 
instance:

– Services containers

– Graphical User Interfaces

– Workflow Plugins
● Checking algorithms and interoperability checker between service are automatically 

generated from descriptions
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 service)

Workflow(s) Plugin(s)

Interoperability Checker
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Based on

Based on

Software components based on PDL (PDL 
Framework)

PDL description editor Generate
descriptions



Why does PDL improve Interoperability ?
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● PDL allows horizontal (i.e. between heterogeneous DM 
and/or Standards) interoperability.



  

Service 1 :
Inputs a,b reals

Outputs c real and
c=-abs(a-b)

Service 2 :
Inputs a,b reals

Outputs c real and
c=+abs(a-b)

Service 3 :
Inputs c reals

Outputs d real and
d=sqrt(c)

Eventual problems are detected only during the workflow execution
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Outputs c real and
c=-abs(a-b)

Always c < 0 
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Adding a 
description 

layer

Eventual problems are detected a priori
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Adding a 
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→ PDL generalize these concepts 

Why does PDL improve Interoperability ?



  

PDL workflows with heterogeneous 
workflows engines

● PDL allow  easy cross communication for workflows using different engines:

N1.1 N1.2

N1.4

N1.3

N1.5

N

legend

Workflow node element

PDL plugin for this WF engine

Piece of a WF exposed 
as PDL service

We use different colors for 
presenting different WF engines

N2.1 N2.2

N.2.3

N3.1

N3.2

● Assume that we want to use

– The entire WF2 as node N1.5 of WF1

– The entire WF3 as node N2.3 of WF2

● Let us see how to perform this with PDL...

WF2

WF1

WF3
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● PDL allow easy cross communication for workflows using different engines:

N1.1 N1.2
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Remarks

● WF1 can finally call easily element of other Workflow engines

● The resulting WF benefits from PDL advantages

– Strength scientific oriented interoperabilty

– Check of interoperabilty graph coherence

● Extracting a PDL service from a piece of Workflow is quick and 
the procedure could be automatized 

 

PDL 
PluginPDL Service 

exposing 
WF2

PDL
Plugin

PDL workflows with heterogeneous 
workflows engines
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