About Svom networking

Jean-Paul Le Fèvre Svom French ground segment project manager

The Svom mission

irfu

saclay

 \cdot Svom : a French-Chinese space mission dedicated to GRB (gamma ray burst) studies

- \cdot Launch likely in 2016
- \cdot By an Italian rocket Vega from Kourou in French Guyana
- \cdot Payload on a mini-satellite developped by Thales
- \cdot Purchased by China
- \cdot Altitude of the orbit : 630 km, inclination of 30°
- \cdot Duration of the mission 3 (+3) years

Svom scientific requirements

irfu

- Permit the detection of all know types of GRBs, with a special care on high-z GRB and low-z sub-luminous GRB
- Provide fast, reliable and accurate GRB positions
- Measure the broadband spectral shape of the prompt emission (from visible to MeV)
- Measure the temporal properties of the prompt emission
- Quickly identify the afterglows of detected GRBs, including those which are highly redshifted (z>6)
- Quickly provide (sub-) arcsec positions of detected afterglows
- Quickly provide redshift indicators of detected GRBs

The Svom on-board instruments

Svom main specifications

irfu

œ

saclay

- On board GRB detections must be sent to ground instruments in real time
- The spacecraft communicates with the French Science Center via a network of 40 VHF receivers
 - The FSC is located at Saclay near Paris (France)
 - \bullet The VHF stations are located around the Earth inside a \pm 30° strip
 - The first recipient of the messages is the Ground Follow-up Telescope located at San Pedro Martir Observatory in Baja California
 - Eventually messages are broadcast to large telescopes, e.g. VLT in Chile.

Participants use the internet to communicate

The French Science Center

The VHF network

irfu CCC

saclay

- $\cdot\,\text{Svom}$ is based on the same principle as Hete2
- The spacecraft stays permanently in contact with the ground thanks to a radio link
 - Possible locations are shown below :

Alert distribution requirements

FSC main interfaces & protocols

The VOEvent technology

irfu

saclay

• Three different layers need to be addressed :

- Content of the VOEvent packets
 - Format v1.1, v2.0
 - Mission-specific data
- Transport protocol
 - How to transmit a packet from a source to a destination ?
- Global architecture
 - Servers, repository, registry
 - Queries

SvomNet collaboration

Svom Networking

Alert messaging architecture

- France-China symetry
- · Gateway between Svom and the rest of the world
- Brokers are in charge of the message distribution
- · Some agents publish messages, others read them

Which transport protocol for our VOEvents ?

irfu

- XMPP, VTCP, Dakota ?
- Our choice is XMPP + PubSub :
 - No need to reinvent the wheel
 - Widely used on the internet
 - Open source libraries, clients, servers available
 - Provide features necessary for Svom
 - · Svom is not an observatory but a PI-led mission
 - We are required to control access to the alert messages
 - The Publish-Subscribe extension has the concept of *Affiliations* defining various privileges granted to the possible different user roles
 - Technical tools are available to implement any policy decided by the PIs

Affiliations and their Privileges

irfu

Access models : Open, Presence, Roster, Authorize, Whitelist

saclay

Affiliation	Subscribe	Retrieve Items	Publish Items	Delete Single Item	Purge Node	Configure Node	Delete Node
Owner	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Publisher	Yes	Yes	Yes	Yes	Yes	No	No
Publish– Only	No	No	Yes	Yes	No	No	No
Member	Yes	Yes	No	No	No	No	No
None	Yes	No	No	No	No	No	No
Outcast	No	No	No	No	No	No	No

The roadmap

irfu

- The actual content of the Svom VOEvent messages is not yet specified so we decided to work on the distribution architecture
- The first step was to get used to working with XMPP : installing a server, implementing test clients, playing with them from different locations
- Then we set up the link between the French and Chinese servers
- In a second stage we have been working with the PubSub extension : creating nodes, displaying their configuration, checking the access rules
- Then we started to manipulate VOEvents using real messages sent by Swift, Fermi, Integral ...
- And now we are integrating VOEvent handling and XMPP distribution

The development environment

- i r f u CCCI saclay
- Our code is written in *Java* (Sun jdk 1.6)
- It is managed with *trac* and *subversion*
- •We also use *hudson, checkstyle, findbugs, testng, ...*
- VOEvents are parsed using *jaxb* version 2.2.1
- •We managed to parse v1.1 and v2.0 VOEvents
- Openfire has been selected for the XMPP server side but we also have an Ejabberd available
- The Smack API is used to implement the various clients needed by this study
- The last available versions from the Ignite Realtime *svn* repository are necessary

My XMMP Toolbox

irfu

saclay

- At this point we have more than 10 client programs available to investigate our XMPP configuration , e.g. :
 - java fr.svom.xmpp.clients.Ping
 - java fr.svom.xmpp.clients.Hello
 - ...
 - java fr.svom.xmpp.clients.VoEventReceiver
 - java fr.svom.xmpp.clients.NodeManager
 - java fr.svom.xmpp.clients.InfoQuery
- And we have a couple of add-ons plugged in the server :
 - fr.svom.openburst.plugin.PubSubProbePlugin
 - fr.svom.openburst.plugin.NodeProbePlugin

What is implemented and working ...

First conclusions

i r f u

- No major difficulties in XMPP programming
- $\boldsymbol{\cdot}$ But a bunch of minor problems to work out
- And many different aspects to deal with
- Architecture looks correct
- The Openfire server works fine and is easily configurable
- Travel times in the internet stay small : from some tens of ms to some hundreds of ms.
- VOEvent parsing take some time : a couple of hundreds of ms on a standard computer

- •More details on : http://svomtest.svom.fr
- •Contact:jean-paul.lefevre@cea.fr

That's all folks !